If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2-20m-24=0
a = 2; b = -20; c = -24;
Δ = b2-4ac
Δ = -202-4·2·(-24)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{37}}{2*2}=\frac{20-4\sqrt{37}}{4} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{37}}{2*2}=\frac{20+4\sqrt{37}}{4} $
| 36+3636=x | | 14x+4=9x-5-137 | | 14x+4=9x-5-136 | | 14x+4=9x-5+137 | | 137-14x+4=9x-5 | | 137+14x+4=9x-5 | | 3.5x/7=1 | | 7x+4x+2=90 | | |x^2-2|=2-3x | | (3x)+(4x)=(x+90) | | 7x=0.63 | | (1/9)+(1/5)=(1/f) | | 6x+31=49 | | 1.6x-x=66 | | 3.12x=0 | | 0.5x/4=0.8 | | 2.3x/2=2.3 | | a/4+6=9/3+4 | | 2+2x3=8 | | 1+2a=3a | | 3x-4(2x+1)=5+2(3x-1) | | x-0.9x=0.1 | | 3.5x+2.5x=12 | | 0.65+0.3x=0.95 | | 6.1x-3.1x=0.9 | | 11−4n=17−n | | 1.3x+1.2x=2.5 | | 0.6x-3=3 | | 180=47-x | | 80=47-x | | 150*0.1=100x | | 4(6x-5)-5(3x+2)=3(5x-6) |